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Deposition of a viscous fluid on a plane surface 

By G. I. TAYLOR 
Cavendish Laboratory, Cambridge 

(Received 28 April 1960) 

Two mechanisms by which a viscous fluid can be deposited on a plane surface 
are described. Measurement of the thickness of the deposit are compared with 
calculated values. It is found that the two agree within rather wide limits of 
experimental error provided the effect of surface tension can be neglected, and 
the conditions under which this is legitimate are discussed. 

The paint brush 
There are many ways in which a viscous fluid can be deposited on a plane 

surface. Perhaps the best known is by means of a paint brush. This consists of 
a number of flexible cylinders or hairs between which the fluid lies. As these hairs 
are dragged over the surface they lie with their axes parallel to the direction of 
motion and the paint is dragged through between them by tangential stress. The 
fluid dragged out by tangential stress acting at one side of the brush on the fluid 
surrounding the outermost layer of hairs must be replaced by fluid flowing 
transversely from the interstices between hairs further from the outer layer. 
This process can be understood qualitatively but to describe it mathematically 
is difficult. For this reason it seemed worthwhile to describe an ideal structure 
which would deliver fluid at a calculable rate even though it has no practical use 
in the art of painting. 

The simplest is a plate sliding at height h, over a fixed parallel plane. If fluid 
is supplied at atmospheric pressure between the leading edge of the moving plate 
and the fixed plane, and if the length of the plane is great compared with h,, the 
pressure in the fluid will be constant and a film of depth Qh, will be left behind on 
the fixed plane. 

If the moving plate is replaced by a portion of a cylindrical surface of any 
cross-section moving parallel to the generators it is possible to calculate the 
volume of fluid left behind. Two examples will be given. 

Parallel plates 

An arrangement by which plates spaced at distance 2d apart could be made to 
slide on their edges over a horizontal plane is shown in figure 1. Taking an origin 
in the surface of the horizontal plane midway between two vertical plates, the 
co-ordinate x is in the direction of motion, i.e. parallel to the plates and z is 
vertical. The velocity u is parallel to the direction of motion at all points and 
satisfies a=% a2u 

ay= az2 
-+- = 0. 
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It is convenient to take u as the velocity relative to the moving plates, so that 
the boundary conditions are 

u = O  at y = + d  and u = U  at z = O .  

The solution of (1) which satisfies these conditions is 

The total volume deposited on the horizontal plane per second from the fluid 
contained between each pair of plates is 

i 
FIGURE 1. A ,  parallel plates; B,  sheet on which deposit is colleoted. 

Semicircular grooves 

I n  the above example the way in which the fluid emerges from the spaces between 
the parallel plates was not considered nor was the manner in which the fluid 
entered them. The effect of gravity and of possible vertical motion between the 
plates was also assumed to be negligible. To avoid these uncertainties a 'mathe- 
matical paint brush ' was designed in which the supply of fluid occurred only at 
the forward end of the channels which regulated the flow. A number of semi- 
circular grooves were cut in the plane base of a Perspex block. These grooves 
ended a t  the supply end in a chamber large enough to ensure that the fluid was 
supplied at atmospheric pressure. There were 5 grooves each of radius 0.1 cm 
and they extend from the rear end of the block through a length of 6.1 cm to 
a cavity from which the fluid was supplied. The method of experiment is indicated 
in figure 2. The block A was placed on a strip of very thin metal foil B which had 
been pressed on to a steel surface plate. The block was charged with a viscous 
fluid, usually glycerine, through the hole C which led into the supply chamber. 
No fluid could escape except through the grooves. The block rested against a 
guide so that it could move parallel to the grooves while depositing fluid on the 
foil. The foil was then peeled off the surface plate and a section cut from the middle 
using a photographic trimming knife. This section was then weighed with its 
deposit. After removing the deposit it  was weighed again. 

I n  a series of such experiments made with glycerine the weights deposited 
per om of foil varied from 0.0422 to 0.0467 g. The mean of six runs was 0.0437 g 
and the corresponding volume was 0.0347 C.C. Thus the experimental value of 
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the volume deposited per cm from each of the five grooves was 0.00694 C.C. The 
calculation of the volume deposited from a semicircular groove of radius a was 
made in the same way as for the parallel plates, giving the result that the volume 
deposited per unit length of run was 2a2/r.* When a = 0.1 cm, we have 
2a2/77 = 0.00638. This is 8 yo smaller than the observed value 0-00694. The dis- 
crepancy may well be due to small errors in the shaping of the grooves or to slight 
undetected variations in the flatness of the surface of the foil. The neglect in the 
calculation of the small pressure gradient along the grooves may give rise to a 
small error. This error, however, could be calculated and it was much less than 
the 8 % discrepancy, though its contribution was to increase the deposit above 
the calculated value 2a2/n. 

A C 
\ / 

FIGURE 2. A ,  Perspex block; B, sheet on which fluid is deposited; C,  filling hole. 

Porous rollers 
Another way in which a viscous fluid can be deposited on a plane,surface under 

conditions for which the flow can be described mathematically is by the use of 
a porous roller. This method is used by printers and sometimes by house-painters. 
The flow of fluid in this case has been discussed mathematically by Taylor & 
Miller (1956) though the connexion between the thickneas of the layer deposited 
and the hydraulic resistance of the porous cylinder is not contained explicitly 
in their paper. They express their results in non-dimensional co-ordinates xl 
and y but here p1 is substituted for their y as a symbol whose meaning is more 
obvious and 

x1 = x ( 9 6 ~ R ~ ) ) a ,  p ,  = -___ (96~R~)-).  (4) 
P U  

Here R is the radius of the cylinder, p is the pressure in the fluid at distance x 
from the point of contact, U is the velocity of the roller, p is the viscosity of the 
fluid and K is a coefficient of the dimensions of a length which occurs when 
Darcy’s law connecting the rate of flow through a porous sheet, W ,  with p ,  is 
expressed in the form w = Kp/,U. 

* Later Dr F. Ursell pointed out that the calculation could have been much simplified, 
because the solution of V2u = 0 which satisfies u = 0 on the circumference and u = U on 
the diameter is 

where 0 is the angle subtended at the point where the velocity is u by the two ends of the 
diameter. 
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Thus IC is not the same as that which would be suitable for use with a porous 
medium, for the latter would be of dimensions (length)2. The total rate of flow 
through unit length of the porous cylinder is 

and on substituting from (4) and (5) we find 

(7) 

The computed relationship between p ,  and xl, is given in the form of a curve 
(figure 3, p. 134 of Taylor & Miller 1956). By graphical integration over the main 
part of the curve and the use of the asymptotic expression for p ,  at large values 

of x,, ~ o w p , d x l  was found to be 0.302 so that 

This value for Q is the value which would apply if the whole space between the 
porous cylinder and the plane on which it rolls were filled with fluid. In  fact the 
fluid only passes through the porous cylindrical surface when there is suction 
and, at a certain point which my analysis could not determine, the flow separates 
at a meniscus, some fluid remaining on the flat plate and some adhering to the 
cylinder. Beyond this meniscus there is no further suction. In  the absence of 
further evidence it seems that the meniscus is likely to divide the fluid equally 
into two streams as it would if the cylindrical surface had not been porous. 
Assuming this to be the case the thickness t of the layer deposited would be 

Q = 2*96U(~R)*.  (8) 

1 Q  2 = -- = 1*48(~R)3. 
2 u  (9) 

Measurements 

A perforated cylinder 21 cm long and 13-5 cm in diameter was made by wrapping 
a perforated sheet round some circular disks. These disks had central holes to 
permit the entry of the fluid to the inner surface of the cylinder. Two layers of 
flannel were wrapped round the cylinder and the seam pulled tight. The fabric 
was bent over the ends of the cylinder, sewn through the end perforations and 
sealed on the inner side to prevent fluid from escaping without passing through 
the flannel. 

Two methods were used to measure t .  The first was to roll the cylinder on a 
sheet of plate glass and then blot up the deposit with weighed sheets of blotting 
paper which were then rapidly enclosed in a container to prevent evaporation 
and weighed again with the absorbed fluid. The second, indicated in figure 3, 
was to use the technique employed in the experiments with the ‘idealized’ paint 
brushes described earlier, but since the thickness of the film deposited was much 
less than before, larger pieces of foil had to be used. Even so the blotting-paper 
technique proved to be more satisfactory because it was difficult to prevent the 
foil from being pulled off the plate on which it had been pressed as the roller 
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passed over it. The porous roller was constructed in the manner described in 
order to make possible a comparison with the theoretical calculation, but even 
so the range of fluids for which that comparison could be made was limited. 

When water was used the thickness left on the plate was sometimes very small 
and it was concluded that on these occasions one of the conditions assumed in 
the theory, that the fluid filled the space between plate and roller, was not valid 
and cavitation occurred. More consistent results were obtained when more 
viscous fluids were used, but when fluids as viscous as pure glycerine were used 
the suction was so great at any but very low speeds that there was danger that 
the flannel would leave the perforated surface on which it was stretched and thus 
upset the geometry of the flow. 

Some of the measurements are given in table 1. 

FIQURE 3. A ,  porous roller; B,  sheet on which fluid is deposited. 

Liquid ,u (g om-l sec-l) Film thickness (10-8 cm) Mean 
50 yo glycerine 0.085 2.39, 2.12, 1.86, 2-6, 2.44 2.28 

Water 0.011 0.89, 1.28, 0.64, 1.21, 0.73 0.95 
30 yo glycerine 0.030 2-25, 1.67, 1.96, 1-77 1.91 

TABLE 1. Measurements of thickness of film deposited by roller. 

Measurements of K 

It seemed desirable to measure K with the flannel stretched on the perforated 
cylinder. The cylinder was therefore set with its axis vertical in a cylinderical 
vessel from which the outflow could be measured. The height H, of the fluid 
outside the cylinder, as well as the difference in height HI between the fluid inside 
and outside the porous surface, was measured. Water was used in this experi- 
ment. The volume Q' flowing through the porous cylinder per second was taken 
8s being given by 

(10) 
~ ~ T R K  

P 
Q' =-Hi(Hz++HI). 

It was found that when the measured values of H,, H,, and Q' were inserted in 
(10) the values of K so found ranged from 1.5 x lo-' to 3.5 x cm. It seems 
from this large variation in K that flannel is not a very suitable porous material 
for this kind of experiment. It may be that the flow affects the geometry of the 
fibre structure of the flannel. 
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Cmparison with theory 

The theoretical values for the thickness of the deposited layer found by inserting 
these limiting values 1.5 x 10-7 and 3.5 x lo-’ for K in (9) are 1.5 x and 
2-3 x lO-Scm. Comparison of these with the observed values given in table 1 
shows that except in the case of water the agreement with the theoretical analysis 
is within the limit of experimental error. A possible explanation of the discre- 
pancy in the case of water is given later. 

Effect of surface tension at the air-fluid interface 
I n  the cases which have so far been discussed it has been tacitly assumed that 

the surface tension produces negligible effects. This is justifiable if the pressures 
due to the curvature of the free surface are small compared with those which 
would produce an appreciable change in the flow. In  the case of the ‘idealized 
paint brush’, since the curvature of the free surface must be of the order l/a 
(or l/d) for the two cases considered the pressure change on passing through the 
meniscus is of order Tla, where T is the surface tension. The viscous stresses are 
of order ,uU/a. It might therefore be thought that the analysis is only realistic 
when T/pU is small. This is not the case however. Taking the case illustrated in 
figure 2, the change in Q due to change in pressure Sp between the ends of the 
grooves is of order a4Sp/pL, where L is the length of the grooves. Q is of order 
a2U, so that the condition that a change Sp will make a negligible change in Q 
is that a2Sp/,uUL shall be small. If 8p is of order T/a ,  this condition is that 
Ta/,uUL shall be small. 

When the measurements were made with the apparatus shown in figure 2, 
the influence of the surface tension was not fully appreciated so that accurate 
measurements of U were not made. They were, however, of order U = 4cm/s. 
At this speed, and with glycerine, for which ,u = 9 g cm-l sec-1 and T = 63 g sec-2, 
T / p U  = 1.7. This is not small, but the length of the grooves was 6 cm while the 
radius was 0.1 om, so that Ta/,uUL = 0.03 and thus was sufficiently small to 
warrant a.n expectation that the calculated value of Q (namely, 2a2/7r) might be 
realized. When water was used instead of glycerine, much thinner layers were 
deposited. 

Similar considerations apply to the porous roller. The calculations (Taylor 
& Miller 1956) were made assuming that the whole field of flow was flooded. In 
fact a meniscus or interface formed itself and divided the fluid into two streams 
one of which remains on the plane surface and the other is carried round on the 
outer surface of the roller. The meniscus is not likely to affect the distribution of 
suction between plane and roller unless it establishes itself within the range 
where the suction is appreciable. A suitable criterion for estimating whether the 
meniscus will have appreciable effect is to  imagine that the meniscus establishes 
itself at the point where the calculated suction is equal to the pressure rise on 
passing through the meniscus due to surface tension. If this point is in the range 
where the suction is small compared with its maximum value, then it would not 
be expected to make an appreciable change in the value of Q. 
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The suction a t  a distance x from the point of contact of roller and plane is 
given (Taylor & Miller 1956, p. 135) by the equation (4) and the relationship 
between the non-dimensional quantities p, and x1 is shown in figure 3 of that 
paper. If the radius of curvature of the meniscus is taken as half of the distance 
between plane and roller at distance x, the meniscus will establish itself near the 
point where 4TR 

Substitution for x and p from (4) and (1 1) gives 

(11) -- - -p. 
5 2  

When x, > 1 the asymptotic form of Taylor & Miller's expression may be used. 

Dividing (13) by (12), an approximate value for the position of the meniscus is 

This is p1x: B. (13) 

where 5.1 is the approximate value of (96)t (3). 
When therefore the value of x, calculated from (14) is larger than unity, so 

that the corresponding value of p1 is small compared with its maximum value 
0.38, agreement may be expected between Taylor & Miller's calculation and the 
measured thickness of the deposited film of fluid. If the value calculated using 
(14) is less than unity the boundary condition used by Taylor & Miller in their 
calculation is not valid, so that agreement would not be expected. Taking values 
appropriate to the apparatus described, namely, R = 6.9 cm and K = 2.5 x lo-' 
cm, the value of x1 at the meniscus was, according to (13), 

X, N 3.7 x 102(pU/T). (15) 
In the experiments U was about 3cm/sec and T = 62gser2.  When 50% 
glycerine for which p = 0.085 was used, pU/T = 4-1 x 10-3 so that the value 
of x1 at the meniscus was (3.7 x 102) (4.1 x 10-3) = 1.5. The corresponding value 
of p, ,  namely, (1.5)3/6, was 0.056. This is well below the maximum value 0.378 
which occurs at  x, = 0-43 (Taylor & Miller 1956) so that little difference would 
be expected between the amount deposited when the suction region was curtailed 
by a meniscus and the amount which would pass through the porous roller if 
the space between it and the plane were flooded. 

When the working fluid is water, for which p = 0.011 and T = 73 in c.g.s. 
units, the corresponding value of x1 according to (15) would be 0.17, which is 
even below the value x, = 0.43 which corresponds with the maximum value of p,. 
Under these conditions where the suction at the meniscus is not small com- 
pared with the maximum suction, the boundary condition used by Taylor 6 
Miller is not even approximately valid, so that the lack of agreement between the 
measured and calculated thickness of the deposit is understandable. 
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